3 resultados para MORPHOGENETIC PROTEIN-7

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] To examine whether obesity-associated leptin resistance could be due to down-regulation of leptin receptors (OB-Rs) and/or up-regulation of suppressor of cytokine signalling 3 (SOCS3) and protein tyrosine phosphatase 1B (PTP1B) in skeletal muscle, which blunt janus kinase 2-dependent leptin signalling and signal transducer and activator of transcription 3 (STAT3) phosphorylation and reduce AMP-activated protein kinase (AMPK) and acetyl-coenzyme A carboxylase (ACC) phosphorylation. Deltoid and vastus lateralis muscle biopsies were obtained from 20 men: 10 non-obese control subjects (mean +/- s.d. age, 31 +/- 5 years; height, 184 +/- 9 cm; weight, 91 +/- 13 kg; and percentage body fat, 24.8 +/- 5.8%) and 10 obese (age, 30 +/- 7 years; height, 184 +/- 8 cm; weight, 115 +/- 8 kg; and percentage body fat, 34.9 +/- 5.1%). Skeletal muscle OB-R170 (OB-R long isoform) protein expression was 28 and 25% lower (both P < 0.05) in arm and leg muscles, respectively, of obese men compared with control subjects. In normal-weight subjects, SOCS3 protein expression, and STAT3, AMPKalpha and ACCbeta phosphorylation, were similar in the deltoid and vastus lateralis muscles. In obese subjects, the deltoid muscle had a greater amount of leptin receptors than the vastus lateralis, whilst SOCS3 protein expression was increased and basal STAT3, AMPKalpha and ACCbeta phosphorylation levels were reduced in the vastus lateralis compared with the deltoid muscle (all P < 0.05). In summary, skeletal muscle leptin receptors and leptin signalling are reduced in obesity, particularly in the leg muscles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] As a consequence to hypobaric hypoxic exposure skeletal muscle atrophy is often reported. The underlying mechanism has been suggested to involve a decrease in protein synthesis in order to conserve O(2). With the aim to challenge this hypothesis, we applied a primed, constant infusion of 1-(13)C-leucine in nine healthy male subjects at sea level and subsequently at high-altitude (4559 m) after 7-9 days of acclimatization. Physical activity levels and food and energy intake were controlled prior to the two experimental conditions with the aim to standardize these confounding factors. Blood samples and expired breath samples were collected hourly during the 4 hour trial and vastus lateralis muscle biopsies obtained at 1 and 4 hours after tracer priming in the overnight fasted state. Myofibrillar protein synthesis rate was doubled; 0.041+/-0.018 at sea-level to 0.080+/-0.018%hr(-1) (p<0.05) when acclimatized to high altitude. The sarcoplasmic protein synthesis rate was in contrast unaffected by altitude exposure; 0.052+/-0.019 at sea-level to 0.059+/-0.010%hr(-1) (p>0.05). Trends to increments in whole body protein kinetics were seen: Degradation rate elevated from 2.51+/-0.21 at sea level to 2.73+/-0.13 micromolkg(-1)min(-1) (p = 0.05) at high altitude and synthesis rate similar; 2.24+/-0.20 at sea level and 2.43+/-0.13 micromolkg(-1)min(-1) (p>0.05) at altitude. We conclude that whole body amino acid flux is increased due to an elevated protein turnover rate. Resting skeletal muscle myocontractile protein synthesis rate was concomitantly elevated by high-altitude induced hypoxia, whereas the sarcoplasmic protein synthesis rate was unaffected by hypoxia. These changed responses may lead to divergent adaptation over the course of prolonged exposure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] In the present study, we have investigated the effect of carbohydrate and protein hydrolysate ingestion on muscle glycogen resynthesis during 4 h of recovery from intense cycle exercise. Five volunteers were studied during recovery while they ingested, immediately after exercise, a 600-ml bolus and then every 15 min a 150-ml bolus containing 1) 1.67 g. kg body wt(-1). l(-1) of sucrose and 0.5 g. kg body wt(-1). l(-1) of a whey protein hydrolysate (CHO/protein), 2) 1.67 g. kg body wt(-1). l(-1) of sucrose (CHO), and 3) water. CHO/protein and CHO ingestion caused an increased arterial glucose concentration compared with water ingestion during 4 h of recovery. With CHO ingestion, glucose concentration was 1-1.5 mmol/l higher during the first hour of recovery compared with CHO/protein ingestion. Leg glucose uptake was initially 0.7 mmol/min with water ingestion and decreased gradually with no measurable glucose uptake observed at 3 h of recovery. Leg glucose uptake was rather constant at 0.9 mmol/min with CHO/protein and CHO ingestion, and insulin levels were stable at 70, 45, and 5 mU/l for CHO/protein, CHO, and water ingestion, respectively. Glycogen resynthesis rates were 52 +/- 7, 48 +/- 5, and 18 +/- 6 for the first 1.5 h of recovery and decreased to 30 +/- 6, 36 +/- 3, and 8 +/- 6 mmol. kg dry muscle(-1). h(-1) between 1.5 and 4 h for CHO/protein, CHO, and water ingestion, respectively. No differences could be observed between CHO/protein and CHO ingestion ingestion. It is concluded that coingestion of carbohydrate and protein, compared with ingestion of carbohydrate alone, did not increase leg glucose uptake or glycogen resynthesis rate further when carbohydrate was ingested in sufficient amounts every 15 min to induce an optimal rate of glycogen resynthesis.